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Oligomere von -Aminosduren, so genannte 3-Peptide, stel-
len eine einzigartige Klasse von Peptiden dar. Da sie im
Unterschied zu den natiirlichen a-Peptiden metabolisch stabil
sind und schon bei einer geringen Anzahl von Aminosédure-
bausteinen Sekundirstrukturen wie Schleifen, Helices oder
Faltblatt-Strukturen bilden koénnen, haben sie betrichtliche
Aufmerksamkeit auf sich gezogen.! Allerdings kann die
Bildung der Sekundérstrukturen die Synthese der Oligomere
erheblich erschweren.”) Kurze bis mittellange (-Peptide
werden in Losung!"™ oder an fester Phase!'l hergestellt, wo-
hingegen lingere Peptide auch durch chemische Ligation'!
zuginglich sind. Dariiber hinaus wurden 3-Peptide erfolg-
reich durch mikrowellenunterstiitzte Peptidsynthese an fester
Phase (SPPS) erhalten.?* Da B-Peptide auf Merrifield-Harz
Sekundirstrukturen einnehmen, kann ihre Synthese fehl-
schlagen, insbesondere dann, wenn sich Haarnadelschleifen
bilden konnen. In diesen Fillen ist es erforderlich, auf die
Fragmentkupplung zuriickzugreifen.”>*!

Mikroreaktoren haben als Alternative zu herkémmlichen
Syntheseverfahren im Rundkolben groBe Aufmerksamkeit
erfahren. Die Entwicklung von Mikroreaktoren fiir die or-
ganische Synthese ist jedoch im Vergleich zu den verbreiteten
Mikroreaktor-Analysesystemen nicht weit fortgeschritten.
Zwar wurde eine Reihe von chemischen Umwandlungen in
Mikroreaktoren durchgefiihrt, beim Grofteil dieser Umset-
zungen handelte es sich jedoch nur um Machbarkeitsstu-
dien.”!

Hier stellen wir die erste Anwendung eines Durchfluss-
Mikrofluidreaktors aus Silicium zur Synthese von Peptiden
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vor. Dabei gelingt im Mikroreaktor nicht nur ein schneller
Test der Reaktionsbedingungen, sondern auch die Herstel-
lung groBerer Mengen des Peptids.®! Dariiber hinaus be-
schreiben wir hier die ersten Peptidkupplungen von Boc- und
Fmoc-geschiitzten Aminosduren binnen 1-5 min bei 120°C,
den Einsatz von p*- und p’-Homoaminoséurefluoriden zur
Peptidkupplung und die vorteilhafte Anwendung einer
C, H,F;-substituierten Benzylester-Schutzgruppe fiir die
Peptidsynthese in Losung.™!

Mikroreaktoren weisen zahlreiche Vorteile fiir die orga-
nische Synthese in Losung auf: Es werden nur geringe
Mengen der wertvollen Synthesebausteine benotigt, Para-
meter wie Reaktionszeit und Temperatur sind exakt ein-
stellbar, und eine Vielzahl von Reaktionsbedingungen kann
fortlaufend und ziigig getestet werden. So kann der von uns
verwendete Durchflussreaktor mit vielen verschiedenen Lo-
sungsmitteln und in einem breiten Temperaturbereich
(—80°C bis +150°C) eingesetzt werden (Abbildung 1).1% Das
Reaktionsvolumen des Mikroreaktors (78.3 uL) eignet sich
fiir Testreaktionen im Mikromolbereich und fiir die Herstel-
lung von einigen Gramm der Zielverbindung pro Tag.
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Abbildung 1. a) Aufbau des Mikroreaktors. b) Schema des Mikroreak-
tors mit den drei Eingéngen — fiir Sdurefluorid, A, Aminosiurebenzyl-
ester, B, und N-Methylmorpholin (NMM), C — Quench-Anschluss, D,
fur Trifluoressigséure und den internen Standard sowie einem Auslass.
Das Reaktorvolumen bis zum Punkt D betrigt 78.3 pL.

Zunichst untersuchten wir die Kupplung von Fmoc-B*-
Homophenylalaninfluorid (Fmoc-f*hPheF, 1) und H-3*hPhe-
OBn (2) im Mikroreaktor (Schema la). Saurefluoride
wurden als aktivierte Form der Aminosduren aus folgenden
Griinden gewdhlt: 1) Sie sind auf einfache Weise aus den
Aminosduren zugénglich, 2) sie sind besonders aktive Acy-
lierungsmittel, und 3) bei ihrer Verwendung in Gegenwart
tertidrer Amine fallen die 16slichen Ammoniumfluoride als
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Schema 1. a) Herstellung des Dipeptids 3 im Mikroreaktor. b) LCMS-Analyse der Bildung von 3 in Abhingigkeit von Zeit und Temperatur.
c) LCMS-Analyse der Bildung von 3 und 4 bei héheren Temperaturen und nach lingeren Reaktionszeiten. Bn=Benzyl, Fmoc=9-Fluorenylmethyl-

oxycarbonyl, TFA™ =Trifluoracetat.

Beiprodukte an.'!!l Die Reaktion in Schema 1a wurde bei
verschiedenen Temperaturen (25°C, 60°C, 90°C) und mit
verschiedenen Reaktionszeiten (1, 2, 5 und 10 min) unter
Verwendung von Fmoc-3*hPhe-OBn (5) als internem Stan-
dard fiir die LCMS-Analyse untersucht. Ein Vergleich des
Umsatzes bei verschiedenen Temperaturen zeigte, dass die
maximale Ausbeute bei 90°C nach 3 Minuten erreicht war
(Schema 1b). Interessanterweise nahm die Menge an Di-
peptid ab, wenn die Kupplung von 1 und 2 bei hoheren
Temperaturen und/oder iiber ldngere Zeit durchgefiihrt
wurde.'” Dies konnte durch einen zweiten Ansatz verdeut-
licht werden (Schema 1c). Dabei wurde durch Fmoc-Ab-
spaltung — nicht iiberraschend unter diesen Bedingungen —
und nachfolgende Peptidkupplung mit einem Uberschuss an
Sdurefluorid das Tripeptid 4 gebildet.!"®! Nach dem Abschluss
des Optimierungsprozesses wurde das Dipeptid 3 im 0.5-
mmol-MaBstab hergestellt (3 min bei 90°C, 92% Ausbeute
nach Sdulenchromatographie). Identische Bedingungen
wurden fiir die Synthese der B*-Dipetide 7 (0.5-mmol-MaB-
stab) und 9 (0.3 mmol) verwendet (Schema 2).

Nachdem gezeigt war, dass sich unser Mikroreaktor fiir
die Herstellung von p*-Dipetiden eignet, untersuchten wir die
Synthese des Tetrapeptids 17 unter Verwendung der Boc-
Strategie (Schema 3). Das Tetrapeptid enthilt alle méglichen
B-Peptidbindungen — (B*-B?), (B*-p*) und (B*-P°) — sowie das
schleifeninduzierende Element B*h(R)Ala-p*h(R)Vall't®!
Ferner ist die erste Aminosdure durch eine fluorierte Ben-
zylgruppe geschiitzt, um eine einfachere Aufreinigung durch
Fluorfestphasenextraktion (FSPE) zu ermdglichen.*1¥ Die
Synthese des Tetrapeptids 17 begann mit dem Aufbau der
ersten p*-p*-Peptidbindung unter den bewihrten Reaktions-
bedingungen. Eine Verweildauer von 3 Minuten bei 90°C
lieferte das Boc-geschiitzte Dipeptid 12b in 91 % Ausbeute
nach FSPE. Dabei zeigte das Ausfallen des Produktes im
Sammelkolben, der bei Raumtemperatur gehalten wurde,
dass die Verbindung eine sehr geringe Loslichkeit aufweist.!

Reaktionen bei 90°C und 120°C ergaben, dass die Bil-
dung der B*-p*-Peptidbindung durch sterische Einfliisse er-
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Schema 2. Herstellung der B*-Dipeptide 7 und 9. Boc = tert-Butyloxy-
carbonyl, 2-CIZ=2-Chlorbenzyloxycarbonyl.

schwert ist und daher hohere Temperaturen und/oder ldngere
Reaktionszeiten benotigt. Der hochste Umsatz wurde mit
einer Verweildauer von 5 Minuten bei 120°C erreicht.'! Auf
diese Weise gelang die Herstellung des Tripeptids 14b in 93 %
Ausbeute im 0.4-mmol-Mafstab.l”] Die abschliefende p>-f°-
Kupplung wurde bei 120°C durchgefiihrt (vollstandige
Kupplung nach 1.5 Minuten). Unter diesen Bedingungen
wurde das Tetramer 16b in 81 % Ausbeute erhalten; die an-
schlieBende Abspaltung der fluorierten und der nichtflu-
orierten Benzylgruppe lieferte die zwitterionische Zielver-
bindung 17.

Um die Mikroreaktormethodik mit den etablierten Me-
thoden zu vergleichen, wurde das Tetrapeptid 17 auch an
fester Phase unter Verwendung der Fmoc-Strategie mit
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Schema 3. a) Synthese der Tetrapeptide 16 und 17. b) Bildung von 14b bei verschiedenen Temperatu-
ren. c) Bildung von 16b bei 120°C. Cbz = Benzyloxycarbonyl, DCM = Dichlormethan.
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HATU-DIPEA-vermittelten
Kupplungen"® sowie in Losung
unter FEinsatz herkommlicher
Glasgerite hergestellt. Zur Syn-
these des Peptids in Losung
wurden zwei Strategien ange-
wendet: Im ersten Ansatz nutzten
wir die auch im Mikroreaktor
eingesetzte fluorierte Benzyl-
gruppe in Kombination mit Siu-
refluoriden, im zweiten gingen
wir von H-$*hPhe-OBn aus und
setzten ~HATU-DIPEA-Kupp-
lungsbedingungen ein. Die Er-
gebnisse der vier Synthesevarian-
ten sind in Tabelle 1 dargestellt.
In allen Féllen wurde das Tetra-
mer in vergleichbaren Gesamt-
ausbeuten erhalten. Allerdings
war die Reinigung fiir fluorierte
Peptide viel einfacher als fiir
nichtfluorierte Peptide; wegen
seiner geringen Loslichkeit erwies
sich die Aufreinigung des nicht-
fluorierten Tetramers 16a als be-
sonders problematisch. Dariiber
hinaus konnte die Reaktion im
Mikroreaktorsystem genau kon-
trolliert werden. Dies ermdglichte
die Verwendung auflergewohn-
lich hoher Temperaturen, was die
Reaktionszeit betrédchtlich ver-
kiirzte. AuBBerdem wurde dadurch
das Ausfallen des Produktes
wihrend der Reaktion verhin-
dert, das bei Synthesen in nor-
malen Kolben zu inhomogenen
gallertartigen Reaktionsmischun-
gen fiihrte.

Tabelle 1: Synthese der Tetrapeptide 16a/b und 17 im Mikroreaktor, durch Kupplungen in Lésung und an fester Phase.!"

Methode 12a/b 14a/b 16a/b 17
Bedingungen (Ausbeute) Bedingungen (Ausbeute) Bedingungen (Ausbeute) Ausbeute
Mikroreaktor 11b (2 Aquiv.); NMM (4 Aquiv.), 13b (2 Aquiv.); NMM (4 Aquiv.), 15b (2 Aquiv.); NMM (4 Aquiv.), >99%
90°C, 3 min 120°C, 5 min 120°C, 1.5 min
(91%) (93%) (81%)
in Losung 11b (2 Aquiv.); NMM (4 Aquiv.), 13b (2 Aquiv.); NMM (4 Aquiv.), 15b (2 Aquiv.); NMM (4 Aquiv.), >99%
(F-Markie- RT, 3 h RT, tiber Nacht RT, tiber Nacht
rung) (94 %) (93%) (93%)
in Lésung®  11a (2 Aquiv.); HATU (1.8 Aquiv.), 13a (2 Aquiv.); HATU (1.8 Aquiv.), 15a (2 Aquiv.); HATU (1.8 Aquiv.), 79%
NMM (4 Aquiv.), RT, iiber Nacht NMM (4 Aquiv.), RT, iiber Nacht NMM (4 Aquiv.), RT, iiber Nacht
(85 %) (85%) (87%)
an fester Fmoc-11a (3 Aquiv.); HATU Fmoc-13a (3 Aquiv.); HATU Fmoc-15a (3 Aquiv.); HATU 55%
Phasel” (2.8 Aquiv.), DIPEA (6 Aquiv.), (2.8 Aquiv.), DIPEA (6 Aquiv.), (2.8 Aquiv.), DIPEA (6 Aquiv.), (nach
(Wang- RT,1.5h RT, 1h RT, 1h HPLC)®
Harz)

[a] HATU =2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium-hexafluorophosphat. [b] DIPEA = Diisopropylethylamin.
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Wir haben einen Mikroreaktor aus Silicium vorgestellt,
der fiir die Synthese von Peptiden geeignet ist. Der mikro-
strukturierte Reaktor bendtigt fiir eine detaillierte Untersu-
chung und Optimierung der Reaktionsparameter nur eine
minimale Menge an Reagentien. Dariiber hinaus konnte im
Mikroreaktor bei ungewohnlich hohen Temperaturen gear-
beitet werden, was zu homogenen Reaktionsmischungen
fiihrt und die Reaktionszeiten deutlich verkiirzt. Die Effizi-
enz der Synthese konnte weiter durch eine fluorierte Ben-
zylschutzgruppe gesteigert werden, die zum ersten Mal fiir die
Herstellung von p-Peptiden eingesetzt wurde und sich als
besonders hilfreich bei der Reinigung schwerloslicher Pro-
dukte erwies.”®! Die hier beschriebene Methode wird nicht nur
fiir die Herstellung anspruchsvoller Peptide, sondern auch fiir
die Synthese anderer Biopolymere wie Oligosaccharide und
Oligonucleotide eingesetzt werden konnen. Generell eroffnet
die kontinuierliche Prozessfithrung viele Moglichkeiten fiir
vielstufige Synthesen und fiir die Automatisierung,?!!
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